Core Concepts in FEA

0

Before we start, some basic mathematic theorem[1][2].

Divergence

v=vi,i∇·v = v_{i,i}

T=Tij,iej∇·T = T_{ij,i} e_j

Gradient (dim+1)

ϕ=ϕ,iei∇\phi = \phi_{,i} e_i

v=vi,jeiej∇v = v_{i,j} e_i⊗e_j

T=Tij,keiejek∇T = T_{ij,k} e_i⊗e_j⊗e_k

Curl (dim=)

×v=εijkvj,iek∇ × v =ε_{ijk} v_{j,i} e_k

×T=εijkTmj,iekem∇ × T =ε_{ijk} T_{mj,i} e_k⊗e_m

The product rule of differentiation

σν=σijνjei\because \bm{σ}·\bm{\nu} = \bm{σ}_{ij}\bm{\nu}_j e_i

(σν)=(σijνj),i=σij,iνj+σijνj,i\therefore ∇·(\bm{σ}·\bm{\nu}) = (\bm{σ}_{ij}\bm{\nu}_j)_{,i} = \bm{σ}_{ij,i}\bm{\nu}_j + \bm{σ}_{ij}\bm{\nu}_{j,i}

also

(σ)ν=σij,iνj(∇·\bm{σ})·\bm{\nu} = \bm{σ}_{ij,i} \bm{\nu}_j

ν:σ=νi,jσji∇\bm{\nu} : \bm{σ} = \bm{\nu}_{i,j}\bm{σ}_{ji}

or as Prof. Zohdi suggested

ν:σ=νi,jσij∇\bm{\nu} : \bm{σ} = \bm{\nu}_{i,j}\bm{σ}_{ij}

but since σ\bm{σ} is symmetric

σij=σji\bm{σ}_{ij} = \bm{σ}_{ji}

therefore

(σν)=(σ)ν+ν:σ(1)\tag{1} ∇·(\bm{σ}·\bm{\nu}) = (∇·\bm{σ})·\bm{\nu} + ∇\bm{\nu} : \bm{σ}

Divergence Theorem

RϕndA=RϕdV∫_{∂R} \phi n dA = ∫_{R} ∇·\phi dV

RvndA=RvdV(2)\tag{2} ∫_{∂R} \bm{v}·n dA = ∫_{R} ∇·\bm{v} dV

RTndA=RTdV∫_{∂R} \bm{T} n dA = ∫_{R} ∇·\bm{T} dV

or

RϕnidA=Rϕ,idV∫_{∂R} \phi n_i dA = ∫_{R} \phi_{,i} dV

RvinidA=Rvi,idV∫_{∂R} v_i n_i dA = ∫_{R} v_{i,i} dV

RTijnjdA=RTij,jdV∫_{∂R} T_{ij}n_j dA = ∫_{R} T_{ij,j} dV

Stokes theorem

Cϕdx=Sn×ϕdA∫_{C} \phi d\bm{x} = ∫_{S} n × ∇\phi dA

Cvdx=Sn×vdA∫_{C} v·d\bm{x} = ∫_{S} n·∇×v dA

CTdx=S(×T)TndA∫_{C} T d\bm{x} = ∫_{S} (∇×T)^T n dA

or

Cϕdxi=Sεijknjϕ,kdA∫_{C} \phi dx_i = ∫_{S} ε_{ijk} n_j \phi_{,k} dA

Cvidxi=Sniεijkvk,jdA∫_{C} v_i dx_i = ∫_{S} n_i ε_{ijk} v_{k,j} dA

CTijdxj=SεjpqTiq,pnjdA∫_{C} T_{ij} dx_j = ∫_{S} ε_{jpq} T_{iq,p} n_j dA

1

The SMALL deformation of the body is governed by (strong form):

(IE:u)+ρg=0∇⋅(\bm{IE}:∇\bm{u})+ρ\bm{g}=\bm{0}

since

σ=IE:u\bm{σ} = \bm{IE}:∇\bm{u}

let

f=ρg\bm{f} = ρ\bm{g}

thus

σ+f=0∇·\bm{σ} + \bm{f} = 0

so we can write

Ω(σ+f)νdΩ=0∫_Ω (∇·\bm{σ} + \bm{f} ) · \bm{\nu} dΩ = 0

using (1)(1)

Ω((σν)ν:σ)dΩ+ΩfνdΩ=0∫_Ω (∇·(\bm{σ}·\bm{\nu})-∇\bm{\nu}:\bm{σ}) dΩ + ∫_Ω \bm{f}·\bm{\nu} dΩ = 0

using (2)(2)

Ων:σdΩ=ΩfνdΩ+ΩσνndA∫_Ω ∇\bm{\nu}:\bm{σ} dΩ = ∫_Ω \bm{f}·\bm{\nu} dΩ + ∫_{∂Ω} \bm{σ}·\bm{\nu}·n dA

because

t=σn\bm{t} = \bm{σ}·\bm{n}

therefore

Ων:σdΩ=ΩfνdΩ+ΓttνdA∫_Ω ∇\bm{\nu}:\bm{σ} dΩ = ∫_Ω \bm{f}·\bm{\nu} dΩ + ∫_{Γ_t} \bm{t}·\bm{\nu} dA

so we have the weak form

Find u,uΓu=u, such that ν,νΓu=0Ων:IE:udΩ=ΩfνdΩ+ΓttνdA\begin{array}{lcr} \text{Find }\bm{u}, \bm{u}|_{Γ_u} = \bm{u}^* \text{, such that }∀\bm{\nu}, \bm{\nu}|_{Γ_u}= 0 \\ \displaystyle∫_Ω ∇\bm{\nu}:\bm{IE}:∇\bm{u} dΩ = ∫_Ω \bm{f}·\bm{\nu} dΩ + ∫_{Γ_t} \bm{t}·\bm{\nu} dA \end{array}

where uu^* is the applied boundary displacement on ΓuΓ_u, t=tt = t^* on ΓtΓ_t

since the integrals must be finite, we improve the weak form as below

Find uH1(Ω),uΓu=u, such that νH1(Ω),νΓu=0Ων:IE:udΩ=ΩfνdΩ+ΓttνdA\begin{array}{lcr} \text{Find }\bm{u} ∈ \bm{H}^1(Ω), \bm{u}|_{Γ_u} = u^* \text{, such that }∀\bm{\nu} ∈ \bm{H}^1(Ω), \bm{\nu}|_{Γ_u}= 0 \\ \displaystyle∫_Ω ∇\bm{\nu}:\bm{IE}:∇\bm{u} dΩ = ∫_Ω \bm{f}·\bm{\nu} dΩ + ∫_{Γ_t} \bm{t}·\bm{\nu} dA \end{array}

where

H1(Ω):=[H1(Ω)]3\bm{H}^1(Ω) \vcentcolon= [H^1(Ω)]^3

explained as below


similar to the definition of uH1(Ω)u ∈ H^1(Ω) which states

uH1(Ω) if uH1(Ω)2:=Ωu,ju,jdΩ+ΩuudΩ<u ∈ H^1(Ω) \text{ if } ||u||_{H^1(Ω)}^2 \vcentcolon= ∫_Ω u_{,j}u_{,j} dΩ + ∫_Ω uudΩ < \infty

the definition of uH1(Ω)\bm{u} ∈ \bm{H}^1(Ω) states as below

uH1(Ω) if uH1(Ω)2:=Ωui,jui,jdΩ+ΩuiuidΩ<\bm{u} ∈ \bm{H}^1(Ω) \text{ if } ||\bm{u}||_{\bm{H}^1(Ω)}^2 \vcentcolon= ∫_Ω u_{i,j}u_{i,j} dΩ + ∫_Ω u_iu_idΩ < \infty


2

should u\bm{u}^* be different from the applied boundary displacement on ΓuΓ_u, weak form can be stated as below

Find uH1(Ω), such that νH1(Ω)Ων:IE:udΩ=ΩfνdΩ+ΓttνdA+PΓu(uu)νdA(3)\tag{3} \begin{array}{lcr} \text{Find }\bm{u} ∈ \bm{H}^1(Ω) \text{, such that }∀\bm{\nu} ∈ \bm{H}^1(Ω) \\ \displaystyle∫_Ω ∇\bm{\nu}:\bm{IE}:∇\bm{u} dΩ = ∫_Ω \bm{f}·\bm{\nu} dΩ + ∫_{Γ_t} \bm{t}·\bm{\nu} dA + P^\star∫_{Γ_u} (\bm{u}^*-\bm{u})·\bm{\nu} dA \end{array}

or

Find uH1(Ω), such that νH1(Ω)Ωνi,jIEijkluk,ldΩ=ΩfiνidΩ+ΓttiνidA+PΓuuiνiuiνidA\begin{array}{lcr} \text{Find }\bm{u} ∈ \bm{H}^1(Ω) \text{, such that }∀\bm{\nu} ∈ \bm{H}^1(Ω) \\ \displaystyle∫_Ω \nu_{i,j} IE_{ijkl} u_{k,l} dΩ = ∫_Ω f_i \nu_i dΩ + ∫_{Γ_t} t_i \nu_i dA + P^\star∫_{Γ_u} u^*_i \nu_i - u_i \nu_i dA \end{array}

where the (penalty) parameter PP^\star is a large positive number.

3

To have

{ϕ^i(ζ1,ζ2,ζ3)=1 , ζ1=ζi1,ζ2=ζi2,ζ3=ζi3ϕ^i(ζ1,ζ2,ζ3)=0 , others\begin{cases} \hat{\phi}_i(\zeta_1,\zeta_2,\zeta_3) = 1 &\text{ , } \zeta_1=\zeta_{i1},\zeta_2=\zeta_{i2},\zeta_3=\zeta_{i3} \\ \hat{\phi}_i(\zeta_1,\zeta_2,\zeta_3) = 0 &\text{ , } \text{others} \end{cases}

for each ϕ^i\hat{\phi}_i 8 functions (for each of the 8 points) with 8 unknowns, aka. ζ1mζ2nζ3k\zeta_1^m \zeta_2^n \zeta_3^k where m,n,k=0,1m,n,k=0,1 can be derived, leading to the only solution as following

{ϕ^1=18(1ζ1)(1ζ2)(1ζ3)ϕ^2=18(1+ζ1)(1ζ2)(1ζ3)ϕ^3=18(1+ζ1)(1+ζ2)(1ζ3)ϕ^4=18(1ζ1)(1+ζ2)(1ζ3)ϕ^5=18(1ζ1)(1ζ2)(1+ζ3)ϕ^6=18(1+ζ1)(1ζ2)(1+ζ3)ϕ^7=18(1+ζ1)(1+ζ2)(1+ζ3)ϕ^8=18(1ζ1)(1+ζ2)(1+ζ3)\begin{cases} \hat{\phi}_1 = \frac{1}{8} (1-\zeta_1) (1-\zeta_2) (1-\zeta_3) \\ \hat{\phi}_2 = \frac{1}{8} (1+\zeta_1) (1-\zeta_2) (1-\zeta_3) \\ \hat{\phi}_3 = \frac{1}{8} (1+\zeta_1) (1+\zeta_2) (1-\zeta_3) \\ \hat{\phi}_4 = \frac{1}{8} (1-\zeta_1) (1+\zeta_2) (1-\zeta_3) \\ \hat{\phi}_5 = \frac{1}{8} (1-\zeta_1) (1-\zeta_2) (1+\zeta_3) \\ \hat{\phi}_6 = \frac{1}{8} (1+\zeta_1) (1-\zeta_2) (1+\zeta_3) \\ \hat{\phi}_7 = \frac{1}{8} (1+\zeta_1) (1+\zeta_2) (1+\zeta_3) \\ \hat{\phi}_8 = \frac{1}{8} (1-\zeta_1) (1+\zeta_2) (1+\zeta_3) \end{cases}

4

IE\bm{IE} has the following symmetries [2:1][3]

IEijkl=IEklij=IEjikl=IEijlkIE_{ijkl} = IE_{klij} = IE_{jikl} = IE_{ijlk}

allowing us to rewrite (3)(3) in a more compact matrix form

Ω([D]{ν})T[IE]([D]{u})dΩ=Ω{ν}T{f}dΩ+Γt{ν}T{t}dA+PΓu{ν}T{uu}dA(4)\tag{4} \begin{aligned} ∫_Ω ([\bm{D}]\{\bm{\nu}\})^T [\bm{IE}] ([\bm{D}]\{\bm{u}\}) dΩ = &∫_Ω \{\bm{\nu}\}^T\{\bm{f}\} dΩ \\ &+ ∫_{Γ_t} \{\bm{\nu}\}^T\{\bm{t}^*\} dA \\ &+ P^\star∫_{Γ_u} \{\bm{\nu}\}^T\{\bm{u}^*-\bm{u}\} dA \end{aligned}

where

[D]:=[x1000x2000x3x2x100x3x2x30x1],{u}:={u1u2u3},{f}:={f1f2f3},{t}:={t1t2t3},(5)\tag{5} [\bm{D}] \vcentcolon = \begin{bmatrix} \cfrac{∂}{∂x_1} & 0 & 0 \\ 0 & \cfrac{∂}{∂x_2} & 0 \\ 0 & 0 & \cfrac{∂}{∂x_3} \\ \cfrac{∂}{∂x_2} & \cfrac{∂}{∂x_1} & 0 \\ 0 & \cfrac{∂}{∂x_3} & \cfrac{∂}{∂x_2} \\ \cfrac{∂}{∂x_3} & 0 & \cfrac{∂}{∂x_1} \\ \end{bmatrix}, \{\bm{u}\} \vcentcolon = \begin{Bmatrix} u_1 \\ u_2 \\ u_3 \\ \end{Bmatrix}, \{\bm{f}\} \vcentcolon = \begin{Bmatrix} f_1 \\ f_2 \\ f_3 \\ \end{Bmatrix}, \{\bm{t}^*\} \vcentcolon = \begin{Bmatrix} t^*_1 \\ t^*_2 \\ t^*_3 \\ \end{Bmatrix},

and [IE][\bm{IE}] is the elastic stiffness matrix of the material.

[IE]:=[IE1111IE1122IE1133IE1112IE1123IE1113IE2211IE2222IE2233IE2212IE2223IE2213IE3311IE3322IE3333IE3312IE3323IE3313IE1211IE1222IE1233IE1212IE1223IE1213IE2311IE2322IE2333IE2312IE2323IE2313IE1311IE1322IE1333IE1312IE1323IE1313][\bm{IE}] \vcentcolon = \begin{bmatrix} IE_{1111} & IE_{1122} & IE_{1133} & IE_{1112} & IE_{1123} & IE_{1113} \\ IE_{2211} & IE_{2222} & IE_{2233} & IE_{2212} & IE_{2223} & IE_{2213} \\ IE_{3311} & IE_{3322} & IE_{3333} & IE_{3312} & IE_{3323} & IE_{3313} \\ IE_{1211} & IE_{1222} & IE_{1233} & IE_{1212} & IE_{1223} & IE_{1213} \\ IE_{2311} & IE_{2322} & IE_{2333} & IE_{2312} & IE_{2323} & IE_{2313} \\ IE_{1311} & IE_{1322} & IE_{1333} & IE_{1312} & IE_{1323} & IE_{1313} \\ \end{bmatrix}


Further rewrite {uh}\{\bm{u}^h\}

{uh}=[ϕ]{a}(6)\tag{6} \{\bm{u}^h\} = [\phi]\{\bm{a}\}

where

{a}:={a1a2a3...a3N},[ϕ]:=[ϕ1ϕ2...ϕNϕ1ϕ2...ϕNϕ1ϕ2...ϕN],\{\bm{a}\} \vcentcolon = \begin{Bmatrix} a_1 \\ a_2 \\ a_3 \\ .\\ .\\ .\\ a_{3N}\\ \end{Bmatrix}, [\phi] \vcentcolon = \begin{bmatrix} \phi_1 & \phi_2 & ... & \phi_N & & & & & & & & \\ & & & & \phi_1 & \phi_2 & ... & \phi_N & & & & \\ & & & & & & & & \phi_1 & \phi_2 & ... & \phi_N \\ \end{bmatrix},

choose ν\bm{\nu} with the same basis, but a different linear combination

{νh}=[ϕ]{b}(7)\tag{7} \{\bm{\nu}^h\} = [\phi]\{\bm{b}\}

with (6),(7)(6),(7) we can rewrite (4)(4)

Ω([D][ϕ]{b})T[IE]([D][ϕ]{a})dΩ=Ω([ϕ]{b})T{f}dΩ+Γt([ϕ]{b})T{t}dA+PΓu([ϕ]{b})T{u[ϕ]{a}}dA(8)\tag{8} \begin{aligned} ∫_Ω ([\bm{D}][\phi]\{\bm{b}\})^T [\bm{IE}] ([\bm{D}][\phi]\{\bm{a}\}) dΩ = &∫_Ω ([\phi]\{\bm{b}\})^T\{\bm{f}\} dΩ \\ & + ∫_{Γ_t} ([\phi]\{\bm{b}\})^T\{\bm{t}^*\} dA \\ & + P^\star∫_{Γ_u} ([\phi]\{\bm{b}\})^T\{\bm{u}^*-[\phi]\{\bm{a}\}\} dA \end{aligned}


We can rewrite (8)(8)

{b}T{[K]{a}{R}}=0\{\bm{b}\}^T \{ [\bm{K}] \{\bm{a}\} - \{\bm{R}\} \} = 0

where

[K]:=Ω([D][ϕ])T[IE]([D][ϕ])dΩ+PΓu[ϕ]T[ϕ]dA(9)\tag{9} [\bm{K}] \vcentcolon = ∫_Ω ([\bm{D}][\phi])^T [\bm{IE}] ([\bm{D}][\phi]) dΩ + P^\star∫_{Γ_u} [\phi]^T[\phi] dA

{R}:=Ω[ϕ]T{f}dΩ+Γt[ϕ]T{t}dA+PΓu[ϕ]T{u}dA(10)\tag{10} \{\bm{R}\} \vcentcolon = ∫_Ω [\phi]^T\{\bm{f}\} dΩ + ∫_{Γ_t} [\phi]^T\{\bm{t}^*\} dA + P^\star∫_{Γ_u} [\phi]^T\{\bm{u}^*\} dA


Consider

[K]=e=1Ne[K]e[\bm{K}] = \sum_{e=1}^{N_e}{[\bm{K}]^e}

we can rewrite (9),(10)(9),(10) for e=1,2..,Nee=1,2..,N_e

[K]e:=Ωe([D][ϕ])T[IE]([D][ϕ])dΩe+PΓu,e[ϕ]T[ϕ]dAe(11)\tag{11} [\bm{K}]^e \vcentcolon = ∫_{Ω_e} ([\bm{D}][\phi])^T [\bm{IE}] ([\bm{D}][\phi]) dΩ_e + P^\star∫_{Γ_{u,e}} [\phi]^T[\phi] dA_e

{R}e:=Ωe[ϕ]T{f}dΩe+Γt,e[ϕ]T{t}dAe+PΓu,e[ϕ]T{u}dAe(12)\tag{12} \{\bm{R}\}^e \vcentcolon = ∫_{Ω_e} [\phi]^T\{\bm{f}\} dΩ_e + ∫_{Γ_{t,e}} [\phi]^T\{\bm{t}^*\} dA_e + P^\star∫_{Γ_{u,e}} [\phi]^T\{\bm{u}^*\} dA_e

where

Γu,e=ΓuΩeΓ_{u,e} = Γ_u ∩ ∂Ω_e

Γt,e=ΓtΩeΓ_{t,e} = Γ_t ∩ ∂Ω_e

5

In 3D,

[ϕ^]:=[ϕ^1ϕ^2...ϕ^8ϕ^1ϕ^2...ϕ^8ϕ^1ϕ^2...ϕ^8][\hat\phi] \vcentcolon = \begin{bmatrix} \hat\phi_1 & \hat\phi_2 & ... & \hat\phi_8 & & & & & & & & \\ & & & & \hat\phi_1 & \hat\phi_2 & ... & \hat\phi_8 & & & & \\ & & & & & & & & \hat\phi_1 & \hat\phi_2 & ... & \hat\phi_8 \\ \end{bmatrix}

express [D][\bm{D}] in terms ζ1,ζ2,ζ3ζ_1, ζ_2, ζ_3

[D(ϕ(x1,x2,x3))]=[D^ϕ(Mx1(ζ1,ζ2,ζ3),Mx2(ζ1,ζ2,ζ3),Mx3(ζ1,ζ2,ζ3))][D(\phi(x1, x2, x3))] = [\hat D \phi(M_{x_1}(ζ1, ζ2, ζ3),M_{x_2}(ζ1, ζ2, ζ3),M_{x_3}(ζ1, ζ2, ζ3))]

so that

[D^]=[ζiζix1000ζiζix2000ζiζix3ζiζix2ζiζix100ζiζix3ζiζix2ζiζix30ζiζix1][\hat \bm{D}] = \begin{bmatrix} \cfrac{∂}{ζ_i}\cfrac{ζ_i}{∂x_1} & 0 & 0 \\ 0 & \cfrac{∂}{ζ_i}\cfrac{ζ_i}{∂x_2} & 0 \\ 0 & 0 & \cfrac{∂}{ζ_i}\cfrac{ζ_i}{∂x_3} \\ \cfrac{∂}{ζ_i}\cfrac{ζ_i}{∂x_2} & \cfrac{∂}{ζ_i}\cfrac{ζ_i}{∂x_1} & 0 \\ 0 & \cfrac{∂}{ζ_i}\cfrac{ζ_i}{∂x_3} & \cfrac{∂}{ζ_i}\cfrac{ζ_i}{∂x_2} \\ \cfrac{∂}{ζ_i}\cfrac{ζ_i}{∂x_3} & 0 & \cfrac{∂}{ζ_i}\cfrac{ζ_i}{∂x_1} \\ \end{bmatrix}

therefore

[D^][ϕ^]=[ϕ^1ζiζix1ϕ^2ζiζix1...ϕ^8ζiζix1ϕ^1ζiζix2ϕ^2ζiζix2...ϕ^8ζiζix2ϕ^1ζiζix3ϕ^2ζiζix3...ϕ^8ζiζix3ϕ^1ζiζix2ϕ^2ζiζix2...ϕ^8ζiζix2ϕ^1ζiζix1ϕ^2ζiζix1...ϕ^8ζiζix1ϕ^1ζiζix3ϕ^2ζiζix3...ϕ^8ζiζix3ϕ^1ζiζix2ϕ^2ζiζix2...ϕ^8ζiζix2ϕ^1ζiζix3ϕ^2ζiζix3...ϕ^8ζiζix3ϕ^1ζiζix1ϕ^2ζiζix1...ϕ^8ζiζix1][\hat \bm{D}][\hat\phi] = \begin{bmatrix} \cfrac{∂\hat\phi_1}{ζ_i}\cfrac{ζ_i}{∂x_1} & \cfrac{∂\hat\phi_2}{ζ_i}\cfrac{ζ_i}{∂x_1} & ... & \cfrac{∂\hat\phi_8}{ζ_i}\cfrac{ζ_i}{∂x_1} & & & & & & & \\ & & & & \cfrac{∂\hat\phi_1}{ζ_i}\cfrac{ζ_i}{∂x_2} & \cfrac{∂\hat\phi_2}{ζ_i}\cfrac{ζ_i}{∂x_2} & ... & \cfrac{∂\hat\phi_8}{ζ_i}\cfrac{ζ_i}{∂x_2} & & & \\ & & & & & & & & \cfrac{∂\hat\phi_1}{ζ_i}\cfrac{ζ_i}{∂x_3} & \cfrac{∂\hat\phi_2}{ζ_i}\cfrac{ζ_i}{∂x_3} & ... & \cfrac{∂\hat\phi_8}{ζ_i}\cfrac{ζ_i}{∂x_3} \\ \cfrac{∂\hat\phi_1}{ζ_i}\cfrac{ζ_i}{∂x_2} & \cfrac{∂\hat\phi_2}{ζ_i}\cfrac{ζ_i}{∂x_2} & ... & \cfrac{∂\hat\phi_8}{ζ_i}\cfrac{ζ_i}{∂x_2} & \cfrac{∂\hat\phi_1}{ζ_i}\cfrac{ζ_i}{∂x_1} & \cfrac{∂\hat\phi_2}{ζ_i}\cfrac{ζ_i}{∂x_1} & ... & \cfrac{∂\hat\phi_8}{ζ_i}\cfrac{ζ_i}{∂x_1} & & & \\ & & & & \cfrac{∂\hat\phi_1}{ζ_i}\cfrac{ζ_i}{∂x_3} & \cfrac{∂\hat\phi_2}{ζ_i}\cfrac{ζ_i}{∂x_3} & ... & \cfrac{∂\hat\phi_8}{ζ_i}\cfrac{ζ_i}{∂x_3} & \cfrac{∂\hat\phi_1}{ζ_i}\cfrac{ζ_i}{∂x_2} & \cfrac{∂\hat\phi_2}{ζ_i}\cfrac{ζ_i}{∂x_2} & ... & \cfrac{∂\hat\phi_8}{ζ_i}\cfrac{ζ_i}{∂x_2} \\ \cfrac{∂\hat\phi_1}{ζ_i}\cfrac{ζ_i}{∂x_3} & \cfrac{∂\hat\phi_2}{ζ_i}\cfrac{ζ_i}{∂x_3} & ... & \cfrac{∂\hat\phi_8}{ζ_i}\cfrac{ζ_i}{∂x_3} & & & & & \cfrac{∂\hat\phi_1}{ζ_i}\cfrac{ζ_i}{∂x_1} & \cfrac{∂\hat\phi_2}{ζ_i}\cfrac{ζ_i}{∂x_1} & ... & \cfrac{∂\hat\phi_8}{ζ_i}\cfrac{ζ_i}{∂x_1} \\ \end{bmatrix}

with Gaussian Quadrature

0LF(x)dx=11F(x(ζ))J(ζ)dζ=1GwiF(ζi)J(ζi)\int_0^L{F(x)dx} = \int_{-1}^1{F(x(\zeta))J(\zeta)d\zeta} = \sum_1^G{w_i}F(\zeta_i)J(\zeta_i)

we can rewrite (11),(12)(11),(12)

[K]e=1G1G1Gwqwrws([D^][ϕ^])T[IE^][D^][ϕ^]J+P1G1Gwqwr[ϕ]T[ϕ]Js[\bm{K}]^e = \sum_1^G{\sum_1^G{\sum_1^G{w_q w_r w_s ([\hat \bm{D}][\hat\phi])^T[\hat{\bm{IE}}][\hat \bm{D}][\hat\phi]J}}}+ P^\star\sum_1^G{\sum_1^G{w_q w_r [\phi]^T[\phi] J_s}}

{R}e=1G1G1Gwqwrws[ϕ]T{f}J+1G1Gwqwr[ϕ]T{t}Js+P1G1Gwqwr[ϕ]T{u}Js\{\bm{R}\}^e = \sum_1^G{\sum_1^G{\sum_1^G{w_q w_r w_s [\phi]^T\{\bm{f}\} J}}} + \sum_1^G{\sum_1^G{w_q w_r[\phi]^T\{\bm{t}^*\} J_s}} + P^\star\sum_1^G{\sum_1^G{w_q w_r [\phi]^T\{\bm{u}^*\} J_s}}

where

F:=x(ζ1,ζ2,ζ3)\bm{F} \vcentcolon= ∇x(ζ_1,ζ_2,ζ_3)

J:=FJ \vcentcolon= |\bm{F}|

and

Js=JFTNnJ_s = J\bm{F}^{-T}·\bm{N}·\bm{n}

derived as below


Nanson’s formula

ndAe=JFTNdAe^\bm{n} dA_e = J\bm{F}^{-T}·\bm{N} d\hat{Ae}

where AeA_e is an area of a region in the current configuration, Ae^\hat{Ae} is the same area in the reference configuration, and n\bm{n} is the outward normal to the area element in the current configuration while N\bm{N} is the outward normal in the reference configuration.

multiply n\bm{n} on both sides

dAe=JFTNndAe^dA_e = J\bm{F}^{-T}·\bm{N}·\bm{n} d\hat{Ae}

therefore

Js=JFTNnJ_s = J\bm{F}^{-T}·\bm{N}·\bm{n}


6

6.1

(IKθ)+ρs=0∇⋅(\bm{IK}⋅∇θ)+ρs=0

let the heat flux density[4] qq

q=IKθ\bm{q} = \bm{IK}⋅∇θ

and let

f=ρsf = ρs

therefore

q+f=0∇⋅\bm{q} + f = 0

so we can write

Ω(q+f)νdΩ=0(13)\tag{13} ∫_Ω (∇·\bm{q} + f ) · \nu dΩ = 0

now consider

(q)ν=qi,iν(∇⋅\bm{q})·\nu = q_{i,i}\nu

(qν)=(qiν),i=qi,iν+qiν,i∇⋅(\bm{q}\nu) = (q_i \nu)_{,i} = q_{i,i}\nu + q_i \nu_{,i}

(ν)q=qiν,i(∇\nu)·\bm{q} = q_i \nu_{,i}

therefore we can write (13)(13) as

Ω((qν)(ν)q)dΩ+ΩfνdΩ=0∫_Ω (∇⋅(\bm{q}\nu) - (∇\nu)·\bm{q}) dΩ + ∫_Ω f\nu dΩ= 0

Ω(ν)qdΩ=ΩfνdΩ+Ω(qν)∫_Ω (∇\nu)·\bm{q} dΩ = ∫_Ω f\nu dΩ + ∫_Ω ∇⋅(\bm{q}\nu)

using (2)(2)

Ω(ν)qdΩ=ΩfνdΩ+ΩqnνdA∫_Ω (∇\nu)·\bm{q} dΩ = ∫_Ω f\nu dΩ + ∫_{∂Ω} \bm{q}⋅\bm{n} \nu dA

so we have the weak form

Find θH1(Ω),θΓθ=θ, such that νH1(Ω),νΓθ=0Ω(ν)IKθdΩ=ΩfνdΩ+ΩqnνdA\begin{array}{lcr} \text{Find }θ ∈ H^1(Ω), θ|_{Γ_θ} = θ^* \text{, such that }∀\nu ∈ H^1(Ω), \nu|_{Γ_θ}= 0 \\ \displaystyle∫_Ω (∇\nu)·\bm{IK}⋅∇θ dΩ = ∫_Ω f \nu dΩ + ∫_{∂Ω} \bm{q}⋅\bm{n} \nu dA \end{array}

6.2

should θθ^* be different from the applied boundary displacement on ΓθΓ_θ, weak form can be stated as below

Find θH1(Ω),θΓθ=θ, such that νH1(Ω),νΓθ=0Ω(ν)IKθdΩ=ΩfνdΩ+ΩqnνdA+PΓθ(θθ)νdA(14)\tag{14} \begin{array}{lcr} \text{Find }θ ∈ H^1(Ω), θ|_{Γ_θ} = θ^* \text{, such that }∀\nu ∈ H^1(Ω), \nu|_{Γ_θ}= 0 \\ \displaystyle∫_Ω (∇\nu)·\bm{IK}⋅∇θ dΩ = ∫_Ω f \nu dΩ + ∫_{∂Ω} \bm{q}⋅\bm{n} \nu dA + P^\star∫_{Γ_θ} (θ^*-θ) \nu dA \end{array}

where the (penalty) parameter PP^\star is a large positive number.

6.3

same as 3

6.4

rewrite θhθ^h

θh=[ϕ]{a}=ϕiai(15)\tag{15} θ^h = [\phi]\{\bm{a}\} = \phi_i a_i

where

{a}:={a1a2a3...aN},[ϕ]:=[ϕ1ϕ2...ϕN],\{\bm{a}\} \vcentcolon = \begin{Bmatrix} a_1 \\ a_2 \\ a_3 \\ .\\ .\\ .\\ a_{N}\\ \end{Bmatrix}, [\phi] \vcentcolon = \begin{bmatrix} \phi_1 & \phi_2 & ... & \phi_N \end{bmatrix},

choose ν\bm{\nu} with the same basis, but a different linear combination

νh=[ϕ]{b}=ϕjbj(16)\tag{16} \nu^h = [\phi]\{\bm{b}\} = \phi_j b_j

with (15),(16)(15),(16) we can rewrite (14)(14)

Ω([ϕ]{b})IK[ϕ]{a}dΩ=Ωf[ϕ]{b}dΩ+Ωqn[ϕ]{b}dA+PΓθ(θ[ϕ]{a})[ϕ]{b}dA(17)\tag{17} \begin{aligned} ∫_Ω (∇[\phi]\{\bm{b}\})·\bm{IK}⋅∇[\phi]\{\bm{a}\} dΩ = & ∫_Ω f [\phi]\{\bm{b}\} dΩ \\ & + ∫_{∂Ω} \bm{q}⋅\bm{n} [\phi]\{\bm{b}\} dA \\ & + P^\star∫_{Γ_θ} (θ^*-[\phi]\{\bm{a}\})·[\phi]\{\bm{b}\} dA \end{aligned}


We can rewrite (17)(17)

{b}T{K{a}{R}}=0\{\bm{b}\}^T \{ K \{\bm{a}\} - \{\bm{R}\} \} = 0

where

K:=Ω([ϕ])IK[ϕ]dΩ+PΓθ[ϕ]T[ϕ]dA(18)\tag{18} K \vcentcolon = ∫_Ω (∇[\phi])·\bm{IK}⋅∇[\phi] dΩ + P^\star∫_{Γ_θ} [\phi]^T[\phi] dA

{R}:=Ω[ϕ]TfdΩ+Ω[ϕ]TqndA+PΓθ[ϕ]TθdA(19)\tag{19} \{\bm{R}\} \vcentcolon = ∫_Ω [\phi]^Tf dΩ + ∫_{∂Ω} [\phi]^T\bm{q}⋅\bm{n} dA + P^\star∫_{Γ_θ} [\phi]^Tθ^* dA


Consider

K=e=1NeKeK= \sum_{e=1}^{N_e}K^e

we can rewrite (18),(19)(18),(19) for e=1,2..,Nee=1,2..,N_e

Ke:=Ωe([ϕ])IK[ϕ]dΩe+PΓu,e[ϕ]T[ϕ]dAeK^e \vcentcolon = ∫_{Ω_e} (∇[\phi])·\bm{IK}⋅∇[\phi] dΩ_e + P^\star∫_{Γ_{u,e}} [\phi]^T[\phi] dA_e

{R}e:=Ωe[ϕ]TfdΩe+Ω,e[ϕ]TqndAe+PΓu,e[ϕ]TθdAe\{\bm{R}\}^e \vcentcolon = ∫_{Ω_e} [\phi]^Tf dΩ_e + ∫_{∂Ω,e} [\phi]^T\bm{q}⋅\bm{n} dA_e + P^\star∫_{Γ_{u,e}} [\phi]^Tθ^* dA_e

where

Γθ,e=ΓθΩeΓ_{θ,e} = Γ_θ ∩ ∂Ω_e

7

Key difference is that the diemsion of the equations derived for thermodynamics are generally lower than those for linear elasticity.

This is because θθ and ss are scalers rather than vectors as u\bm{u} and g\bm{g}, and IK\bm{IK} is a second order tensor rather than a forth order tensor as IE\bm{IE}.

Reference


  1. Tensor derivative (continuum mechanics) Cartesian coordinates, https://en.wikipedia.org/wiki/Tensor_derivative_(continuum_mechanics)#Cartesian_coordinates_2 ↩︎

  2. Lallit Anand and Sanjay Govindjee, 2019, Introduction to Continuum Mechanics of Solid ↩︎ ↩︎

  3. Allan F. Bower, 2012, Applied Mechanics of Solids, Chapter 3 ↩︎

  4. Thermal conduction differential form, https://en.wikipedia.org/wiki/Thermal_conduction#Differential_form ↩︎

Hover your mouse or tap on the left edge to navigate.
Upon dismissing, you acknowledge that you have read and understand our Privacy Policy.